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Stress-relaxation in bending data, when the constitutive equation that describes the creep 
behaviour of the material includes an internal stress, are simulated numerically for two creep 
laws normally used in the literature. The simulation shows that the equations used to convert 
bending data to uniaxial conditions are also applicable when the internal stress changes with 
the applied stress. 

1. I n t r o d u c t i o n  
Stress-relaxation measurements in bending can give 
useful information on the creep behaviour of metals 
and alloys, particularly under critical conditions as, 
for example, under  irradiation [-1-5]. These experi- 
ments are much easier to perform than normal creep 
testing since several specimens can be tested at the 
same time to studY the influence of a large number of 
variables (composition, thermo-mechanical treatment, 
etc.) simultaneously. In addition, the data can be 
obtained up to times of the order of those reached in 
creep, which is not possible in the case of stress- 
relaxation testing under uniaxial conditions. The ana- 
lysis of bending data, however, is very complicated 
due to the fact that the specimens are subjected to a 
stress distribution. 

In practice, flat specimens are located into holders 
with different radii, which give different maximum 
outer fibre stresses under elastic bending. The holders 
with the specimens are inserted into a furnace at the 
desired temperature, and removed periodically for 
curvature measurements. The radii of curvature R i 
after releasing the specimens from the holders are 
normally determined by measuring the coordinates of 
different points with respect to a reference plane in the 
arc of circhmference determined by the curved beam, 
and feeding the data to a computer program which 
calculates the average radius by a least-square fitting. 
In summary, the experiment provides the quantity 

O'b - -  2 R i R (1) 

as a function of time. o- b is the measured stress change 
at the surface of the bent specimen after releasing it 
from the holder, h is the thickness of the specimen, R is 
the radius of curvature of the holder and E is Young's 
modulus. 
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The initial stress E at the surface of the bent speci- 
men is given by 

= e h / 2 R  (2) 

The fundamental problem of bending experiments is 
then to obtain information on the stress-relaxation 
behaviour of the material from the measured ~b 
against log t curves, where t is the time, measured at 
different E values and at various temperatures. The 
analysis of the results is particularly complicated when 
the creep rate does not change linearly with the appli- 
ed stress. Lewthwaite and Mosedale [6, 73 have ana- 
lysed the stress-relaxation behaviour of beam and 
torsion specimens by assuming a law appropriate for 
irradiation creep. Povolo [8] solved the resulting 
mathematical expressions and gave a procedure to 
obtain the creep parameters from the stress-relaxation 
data. All these treatments assume a given creep law for 
the material and analyse the problem of obtaining the 
parameters of the particular creep law from the ~b 
against logt curves. In other words, the stress-relaxa- 
tion in bending data were considered in a stress 
against time diagram. 

Povolo and Toscano [-9, 10] have studied the prob- 
lem of obtaining inforr on the creep behaviour 
of the material from the measured ~b against logt, 
independently from the creep law. The procedure used 
is based on the momentum, M, equilibrium equation 
for a rectangular beam of width b stressed in a circular 
holder, given 

f h/2 1 
M = b % r d r  = c%bh 2 (3) 

J -  hi2 

where % is the stress in a fibre at a distance r from the 
neutral axis, at any time t. The integral equation 
expressed by Equation 3 can be written in a differ- 
ential form [93 and under the assumption that the 
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thickness of the specimen is constant, results in 

% = % 2 = 7 e~b + 3 - \ d E ]  (4) 

This equation shows that the stress at the surface of 
the beam, %, before unloading, can be obtained from 
the measured quantity %. The stress-relaxation data 
in bending can then be reduced to uniaxial conditions, 
i.e. to % against t curves, by making measurements of 
o- b against t with holders of different radii. 

Another possibility appears when the radius of the 
holder is constant and the thickness of the specimens 
is variable. Equation 4 transforms in this case to 

2 _h (dOb~ 
O's = 7 O'b -Jr- 3 \ d h J  (5) 

showing that % can be obtained from measurements 
of (3 8 for different thicknesses, avoiding the use of 
different holders. 

Equation 5 has been checked experimentally in 
specimens of Zircaloy-4[10] and Equation 4 has been 
used in zirconium alloys [9, 11 15], in stainless steel 
[16, 17] and in Inconel 718 [18] to convert stress- 
relaxation in bending data to uniaxial conditions. The 
problem with Equations 4 and 5, however, is that they 
were obtained from Equation 3 by using Leibniz's rule 
for differentiation of an integral dependent on a para- 
meter, which requires the continuity of the derivative 
of the integrand [19]. This would not  be the case, for 
example, when the creep law used includes an internal 
stress, which is reached at some points in the bent  
specimen. In fact, in uniaxial conditions the internal 
stress is only a limit for the applied stress when t tends 
to infinity. 

It is the purpose of this paper to show that Equation 
4 also gives reliable results when the creep or stress- 
relaxation law involves an internal stress, by using 
numerical simulation with typical expressions re- 
ported in the literature for creep or stress-relaxation 
behaviour. 

2. Theoretical background 
Equation 4 is applied to the experimental (3 b against 
log t curves, measured at different initial stresses E, on 
replacing the differential by small and finite incre- 
ments, that is dCyb/d52 _~ Ao'b/A~ at any time. Then, 
the numerical simulation will be performed according 
to the following procedure: 

(i) A given constitutive equation for stress relaxa- 
tion is assumed, that is, the law 

6" = f(cy*) (6) 

is known. The dot indicates a derivative with respect 
to the time and o* = o - cr i is the effective stress. 

(ii) It is assumed that the specimen is bent elasti- 
cally at the beginning of the experiment, so that the 
stress distribution is 

E.  = 2X/hr  (7) 

It is also assumed that the mechanism of creep is the 
same in tension as in compression, that the neutral 

axis remains at the centre of the beam and that the law 
% = %(Z) is known. Equation 1 is then integrated to 
give 

o = o ( t , z )  (8) 

(iii) Once ~(t, E) is known, Equation 3 written in 
the form 

6 t hI2 
o b - h2 % r  dr (9) 

J - h / 2  

is integrated analytically or numerically, leading to 

(Yb = O'b (t' 2 )  (10) 

Furthermore, if Equation 10 is evaluated for two 
slightly different initial stresses at the surface, Z 1 and 
E 2, given C~b~ and ~b2, Equation 4 can be written as 

O's(t' ~') = 70"b -~- 7 k A'y~ / (1 1) 

w h e r e  Z = (~1 Jr Z2)/2, 6b = (O'bi 4- 0b2)/2,  A ~ b  

= Orb2 -- C~bl and AZ = Z 2 - E i. 

The values given by Equation 11 can be compared 
with those given by Equation 8 for 2 = 1~. This com- 
parison will show whether Equation 11, used to con- 
vert bending data to uniaxial conditions, is also valid 
when an internal stress is present. The procedure just 
described will be applied to two constitutive equations 
which are commonly used in the literature, namely the 
Johns ton-Gi lman [20] and Kuznetsov-Pavlov [21] 
equations. 

2.1. The Johns ton -G i lman  equat ion 
In this model, the creep rate is given by 

d = ~pbl )  0 ( (y /~o)  m* = d 0 ( o " -  (yi) m* (12) 

with 

d o = ?ppbvo/Cy'~* (13) 

where qb is an orientation factor, p is the mobile 
dislocation density, b is the Burgers vector and v0, o o 
and m* are material constants. For stress relaxation 
experiments 

d - 6./E (14) 

where E is Young's modulus. Combining Equations 
12 and 13 leads to 

dcy/(cy - cyi) m* - doEdt  (15) 

which, integrated between 52 and cy; and 0 and t, gives 

o = ~i + [(2~ - %)"-"*)  

_ doEr(1 _ rn,)]i/(i m*) (16) 

On introducing x = 2r/h and taking into account 
Equation 7, Equation 16 can be written as 

cy(x, t) = cy i + [(Zx - cri)~ 

- doEr(1 - m*)] 1/(1-m*) (17) 

Moreover, Equation 9 is reduced in this case to 

CYb(X , t) = 3 r~(X, t ) x  d x  (18) 
0 
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with o(x, t) given by Equation 17. Finally, the value of 
the integral in Equation 18 depends on the functional 
dependence of cy i on Z. 

2.2. The Kuznetsov-Pavlov equation 
In this case the creep rate is expressed by 

k = d~pbv o sinh[C(cy - %)] 

= k 1 sinh[C(o - oi) ] (19) 

where C is a material constant. For stress relaxation, 
Equation 19 can be written as 

d~/sinh[C(o - oi) ] = - E k l d t  (20) 

which, integrated between 2, and o, and 0 and t, and 
rearranging terms gives 

1 feC(Zx-m)(l+em)+(1--eAt) "] 
o ( x , t ) = % -  l n \ ~ ( 1 - - e  ar ) + ( l + e ~ J  

(21) 

with 

A = E g ~ C  (22) 

3. Results 
The expressions for o(x, t) and %(x, t) described in the 
preceding paragraph will be evaluated for different 
dependencies of % on E. The different situations 
considered, some of which are illustrated in Fig. 1, are 
as follows: 

(i) ol = constant, i.e. independent of Z. 
(ii) A linear variation of c h with E, i.e. 

% = mE, = a x e  (23) 

with three different values for the slope a, as indicated 
by the straight lines (a), (b) and (d) of Fig. 1. The full 
squares of the same figure show the dependence of % 
on 2; obtained experimentally from stress relaxation in 
bending of stainless steel type AISI 304 at 773 K [16]. 

Moreover, the broken straight line corresponds to 
0~ -- 0.027 and the crosses indicate some experimental 
data for stress relaxation in bending of stainless steel 
type AISI 304 at 823 K [17]. 

(iii) A law of the type 

% = 55{1 + tanh [0 .06(Er-  85.71)]} MPa 

(24) 

as illustrated by curve (c) of Fig. 1. In this example, % 
increases at first with Z, and then reaches a saturation 
value. 

(iv) Curve (e) of Fig. 1 represents a dependence of % 
on Y'r of the form 

gl = 2511 + tanh [0.03(~;r - 266)]} MPa 
(25) 

(v) Finally, the last situation that will be con- 
sidered involves the case in which the internal stress 
increases during the relaxation due to "work-harden- 
ing" [22], i.e. 

50" i = 08gp  (26) 

where 8Sp is the increment in plastic strain and 0 is the 
work-hardening coefficient, which is assumed to be 
constant, i.e. workhardening increases linearly with 
the plastic strain. Moreover, since &p = - 6 / E  for 
stress relaxation, Equation 26 can be written as 

0 
8%(t) = ~ Soy(t) (27) 

where 8or(t) = o o - o, % being the stress at the be- 
ginning of relaxation (t = 0) and o the stress at any 
instant t. In addition, on taking into account that 

% = %0 + 8~ (28) 

where %0 is the internal stress at t = 0, combining 
Equations 27 and 28 gives 

%(0 = h - t o o ( t )  (29) 

with 

0 
h = (~iO + ~ ~ (30) 

~  

b 

300 
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100 

(e) 

50 100 150 200 250 300 
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Figure 1 Dependence of the internal 
stress % on the initial stress at the 
surface of the bent specimen, E, used 
for the calculation of the stress-re- 
laxation curves: (a) ~ = 0 . 8 ,  (b) 
cz = 0.4, (c) cr~ = 55{1 + tanh[0.06 
( E -  85.71)]}MPa, (d) c~=0.1, (e) 
o i = 25 {1 + tanh [0.03 (E - 266)]} 
MPa.  The broken curve corresponds 
to c~ = 0.027. The full squares and the 
crosses indicate some experimental 
points obtained for stress-relaxation 
in bending in stainless steel AISI 304. 
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and 

m = O/E (31) 

The different functional dependencies ment ioned 
above will be used next to simulate, for the two 
constitutive equations ment ioned above, the stress 
relaxation in bending. For  % = constant  and x = 1, 
Equat ions  17 and 18 convert  to 

~ ( X ,  t)  = ~ + 17.(2 - ~ ) ( 1 - " * )  

- goE(1 - m * ) t ]  1/(1-m*) (32) 
and 

L O'b(52 , t) = (CY3/X 2) + 3 (Y(X, t )X  d x  (33) 
i / x  

respectively, with cy(X, t) given by Equat ion  17. Once 
the parameters  oh, 2, m* and go E are given, Equat ion 
32 allows a calculation of cs against t, for different 
values of 12. Furthermore,  on numerically integrating 
Equat ion  33 it is possible to evaluate ~b against t for 
various values of 12, and %(s t) by using Equat ion  11. 
The results obtained in this way, for three different 
values of 2, are illustrated by curves A, B and C of 
Fig. 2 and the parameters  used for the calculations are 
given in Table I. The broken curves represent % and 
the full curves give cy(12, t), as calculated with Equat ion  
32, or crs(s t) as calculated from ~b by means of 
Equat ion  11. In effect, a perfect coincidence was ob- 
tained between cy(12, t) and Cys(~, t) for 12 = "Z, indicat- 
ing that  Equat ion  4, used to convert  bending data  to 
uniaxial conditions, is valid for this case. 

A similar procedure can be used for the constitutive 
equat ion represented by Equat ion  19. ~(12, t) is calcu- 

lated with Equat ion  21 for x = 1 for % = constant;  
~b is obtained by numerically integrating Equat ion  33, 
with ~(x, t) given by Equat ion  21, leading to %('Z, t) by 
means of Equat ion  11. Curves A*, B*, C* of Fig. 2, 
calculated with the parameters  given in Table I, 
illustrate the results obtained for the same values of I2 
as for curves A, B, C. Here also the broken curves 
indicate ~b and the full ones either ~(Z, t) or %(~, t) 
for s = 12. In summary,  it can be stated that  for the 
two constitutive equations represented by Equat ions  
12 and 19. Equat ion 4 gives reliable results for uniaxial 
conditions when % = constant.  

It should be pointed out  that  the same nota t ion  will 
be used through all the curves that will follow, i.e. the 
curves with A, B, C and A*, B*, C* will indicate the 
results obtained with the J o h n s t o n - G i l m a n  equat ion 
and the Kuznetsov Pavlov equation, respectively. 
Fur thermore,  in each case the broken curves corres- 
pond  to ~b and the full ones to either ~(Y, t) or %(2,, t), 
since a perfect coincidence was always found between 

and %. 
The concepts developed can also be applied when % 

changes linearly with 2, i.e. when the internal stress is 
described by Equat ion  23. The J o h n s t o n - G i l m a n  
equat ion leads in this case to 

O'(X, [) = (~12X -~- {E(1 - 0 0 1 2 x ]  ( I - m * )  

- goE(1 - m * ) t }  1/(a-m*) (34) 

which for x = 1 reduces to 

cs(z,  t) = ~12 + {[(1 - ~ ) z ]  ( l -m*)  

- g o E ( 1  - m * ) t }  I/(1 m*) (35)  

b 

200 

100 

~,, = 200 MPa 

150 MPa . . . .  ~ - ' - ~ Q " ~ : - 2 2 _ - 2 2 2 2 - _ _ _  

100 MPa ~ ~ ..... 

o . . . . . . .  . . . . . . .  < . . . . . . . . .  

0 , I , I , I , I , I Figure 2 Stress-relaxation curves 
2 4 6 8 10 for (3 i = constant, calculated with 

[-09 [ ~" {5)] the parameters given in Table I. 

TABLE I Parameters used for calculation of the stress-relaxation curves for ~i = constant, shown in Fig. 2; m*, g0 E and klE, C are for the 
Johnston-Gilman and Kuznetsov-Pavlov equation, respectively 

Curve Z % m* 8o E e i E C 
(MPa) (MPa) (MPa(1-"*)s -1) (MPas 1) (MPa 1) 

A or A* 200 120 7 1 x 10 is 1 X 1 0  . 6  0.02 
Bor B* 150 80 4 l x l 0  lo lx10 6 0.02 
Cor C* 100 60 2 1 x10 -6 1x10 6 0.02 

6 5 9 3  



Moreover,  once ~(x, t) is known,  crb can be calculated 
by numerical ly integrat ing Equa t ion  18 and cry(Z, t) 

can be obta ined by using Equa t ion  11. A similar 
procedure can be followed when the funct ional  de- 
pendence of cr~ on E~ is represented by Equat ions  24 

and 25, except that  cy~ should be replaced by the 
appropria te  expression in Equa t ion  17. The detailed 
calculat ions are easy to perform and will no t  be 
presented in this paper. Finally,  in the case where the 

consti tutive equat ion  is represented by Equa t ion  19, 
the appropria te  funct ional  dependence ~ = cri(2 ) 

should be incorporated into Equa t ion  21 and the 

calculations can be carried on as for the case of the 
J o h n s t o n - G i l m a n  equation.  

Fig. 3 shows the results obta ined when the internal  
stress varies according to Equa t ion  23 and  the para-  
meters used for the calculations take the values indi- 

cated in Table  II. It is interesting to notice in this 
figure that for curve A*, o- b = ( 5  = O" s and  for curves 

B* and C* only a slight difference is found between o" b 
and c~ or crs. 

Curves A, A* and  B, B* of Fig. 4 illustrate the stress 

TABLE II Parameters used for calculation of the stress-relaxa- 
tion curves when the internal stress changes according to Equa- 
tion 23, shown in Fig. 3; for A*, B* and C*, C = 0.02 MPa and i~ 
E =  1 • 10-6 MPas -1 

Curve Z ct m* go E 
(MPa) (MPa~l -re*is 1) 

A or A* 200 0.8 7 1 x 10 -5 
B or B* 150 0.4 4 1 x 10 -1~ 
C or C* 100 0.1 2 1 • 10 -6  

TABLE III Parameters employed for calculation of the stress- 
relaxation curves of Fig. 4, where ~ changes according to Equa- 
tion 24 or 25; Y~=282MPa, ~:o E -  lx l0 -1~  ~ "*~s -~, ~x 
E = I •  6 M P a s - l , m . = 4 a n d C = 0 . 0 2 M P a -  

Curve {3- i 

(MPa) 

A or A* 25 {1 + tanh[0.03 (Z - 266)]} 
B or B* 55 (1 + tanh[0.06 (Z - 85.71)]} 

200 

A 

n 

b 100 

0 

3OO 

b 

100 

0 
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12 14 

Figure 3 Stress-relaxation curves for 
cr~ = uE, calculated with the para- 
meters given in Table II. 

Figure 4 Stress-relaxation curves ob- 
tained when the internal stress 
changes according to Equations 24 
or 25. The parameters used for 
the calculations are indicated in 
Table III. 
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Figure 5 Stress-relaxation curves 
when work-hardening occurs during 
the relaxation, i.e. when the internal 
stress varies according to Equation 
28. The parameters used for the cal- 
culations are indicated in Table IV. 

TABLE IV Parameters used for the calculation of the stress- 
relaxation curves of Fig. 5, where work-hardening is present; 
Cqo = 50 MPa , 0/E = 0.3, ~1E= 1 x 10-6 MPas 1 and 
C = 0.02 MPa- 1 

Curve E ~o E m* 
(MPa) (MPa(1 -,,*) s 1) 

A or A* 200 1 x 10 -is 7 
B or B* 150 1 • 10 -1~ 4 
C or C* 100 1 x 10 6 2 

relaxation behaviour when the internal stress changes 
according to Equations 25 and 24, respectively. These 
curves were evaluated for E = 282 MPa, with the 
parameters given in Table III. 

Finally, the situation in which strain-hardening oc- 
curs during relaxation will be considered. The 
Johnston Gilman model, for example, on substituting 
Equation 29 into Equation 23 and integrating, taking 
into account that c o = Ex, gives 

1{ E c~(x, t ) -  1 + 0 eL~ + 0 E x +  (1 +n 0) 

].} + (Zx - CLo) -1/" (36) 

where 

and 

= O/E (37) 

n = 1/(m* - 1) (38) 

On assuming that %0 is independent of the initial state 
of loading, Equation 33, with % substituted by %o and 
cy(x, t) given by Equation 36, can be used to calculate 
cy b. Similar considerations can be made for the 
Kuznetsov-Pavlov equation. The results obtained in 
this way are illustrated in Fig. 5, for O/E = 0.3 and 
~io = 50 MPa. The parameters used for the calcu- 
lations are given in Table IV. 

4. Discussion and conclusions 
The examples considered in the paper show that, even 
in the case where an internal stress is present in the 
constitutive equation that describes the stress-relaxa- 
tion behaviour of the material, Equation 4 gives reli- 
able results when converting bending data to uniaxial 
conditions. It should be pointed out that the values for 
the different parameters used to calculate the stress- 
relaxation curves of Figs 2 to 5 are in the range of 
those encountered in actual experimental data for 
stress-relaxation in bending in different alloys [9-17]. 

It is important to mention that the most detailed 
bending experiments were performed in zirconium 
alloys, since the results were correlated with creep and 
load-relaxation experiments. In fact, the bending data 
obtained in specimens under different thermo-mech- 
anical conditions, once converted to uniaxial condi- 
tions, could be described by the same constitutive 
equation used in creep and load-relaxation [12 15]. 
Furthermore, meaningful physical parameters could 
be obtained from the experimental curves since they 
could be described by a physical model involving the 
effects of jog-drag upon the rate of creep in a material 
containing a three-dimensional dislocation network. 
In this context, a correlation was established between 
the initial stress, Z, and the ratio of cell diameter to 
mean dislocation spacing [-12, 14, 15]. The constitutive 
creep equation used, however, did not include an 
internal stress. 

Bending data in stainless steel were interpreted in 
terms of a constitutive equation including an internal 
stress, such as Equation 12 [16, 17]. After reduction of 
the data to uniaxial conditions, the dependence of 
the internal stress on the initial stress, i.e. the law 
% = cyi(Z ), was obtained directly from the experi- 
mental curves. This was also the case when the inter- 
nal stress, in addition, varied with the applied stress. 
The stress-relaxation curves simulated in this paper 
and shown in Figs 2 to 5 confirm the procedure used 
since Equation 4, employed for the reduction of the 
bending data to uniaxial conditions, is applicable also 
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when ~i # 0. In summary, it can be concluded that 
stress-relaxation data in bending can also give reliable 
information on the creep law for the material in the 
presence of an internal stress. 
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